EE 330 Lecture 43

Digital Circuits

- Logic Effort
- Elmore Delay
- Power Dissipation

Spring 2024 Exam Schedule

Exam 1 Friday Feb 16
Exam 2 Friday March 8
Exam 3 Friday April 19
Final Exam Tuesday May 7 7:30 AM - 9:30 AM

Summary: Propienagation fivelay in MultipleLevels of Logic with Stage Loading

$\mathrm{C}_{\text {IN }} / \mathrm{C}_{\text {REF }}$	Equal Rise/Fall	Equal Rise/Fall (with OD)	Minimum Sized	$\begin{gathered} \text { Asymmetric OD } \\ \left(\mathrm{OD}_{\mathrm{HL}}, \mathrm{OD}_{\mathrm{LH}}\right) \end{gathered}$
Inverter	1	OD	1/2	$\mathrm{OD}_{\mathrm{HL}}+3 \cdot \mathrm{OD}_{\mathrm{LH}}$
NOR	$\frac{3 \mathrm{k}+1}{4}$	$\frac{3 k+1}{4} \cdot \mathrm{OD}$	1/2	$\begin{gathered} \hline 4 \\ \mathrm{OD}_{\mathrm{HL}}+3 \mathrm{k} \cdot \mathrm{OD}_{\mathrm{LH}} \end{gathered}$
NAND	$\frac{3+k}{4}$	$\frac{3+\mathrm{k}}{4} \cdot \mathrm{OD}$	1/2	$\mathrm{k} \cdot \mathrm{OD}_{\mathrm{HL}}^{4}+3 \cdot \mathrm{OD}_{\mathrm{LH}}$
Overdrive				
Inverter				
HL	1	OD	1	$\mathrm{OD}_{\text {HL }}$
LH	1	OD	1/3	$\mathrm{OD}_{\text {LH }}$
NOR				
HL	1	OD	1	OD HL
LH	1	OD	1/(3k)	$\mathrm{OD}_{\text {LH }}$
$\begin{array}{r} \text { NAND } \\ \text { HL } \end{array}$	1	OD	1/k	$\mathrm{OD}_{\text {HL }}$
LH	1	OD	1/3	$\bigcirc D_{\text {LH }}$
$t_{\text {PROP }} / t_{\text {REF }}$	$\sum_{k=1}^{n} F_{l(k+1)}$	$\sum_{k=1}^{n} \frac{F_{(k+1)}}{O D_{k}}$		$\frac{1}{2} \sum_{k=1}^{n} \mathrm{~F}_{\text {l(} k+1)}\left(\frac{1}{O D_{\text {HLk }}}+\frac{1}{O D_{\text {LHk }}}\right)^{4}$

Optimal Driving of Capacitive Loads

Order reduction strategy : Assume overdrive of stages increases by the same factor clear until the load

This becomes a 2-parameter optimization (minimization) problem ! Unknown parameters: $\{\theta, \mathrm{n}\}$

One degree of freedogn
One constraint: $\theta^{n} C_{R E F}=C_{L}$

Optimal Driving of Capacitive Loads

$$
\begin{aligned}
& \theta_{\text {OPT }}=e \\
& n_{O P T}=\ln \left(\frac{C_{L}}{C_{R E F}}\right)=\ln \left(F I_{L}\right) \\
& t_{\text {PROP }}=t_{\text {REF }} \frac{\theta}{\ln (\theta)}\left[\ln \frac{C_{L}}{C_{R E F}}\right] \quad t_{\text {PROP }}=t_{\text {REF }} e\left[\ln \frac{C_{L}}{C_{\text {REF }}}\right]=n \theta t_{\text {REF }}
\end{aligned}
$$

Optimal Driving of Capacitive Loads

A practical solution

- minimum at $\theta=e$ but shallow inflection point for $2<\theta<3$
- practically pick $\theta=2, \theta=2.5$, or $\theta=3$
- since optimization may provide non-integer for n, must pick close integer

Optimal Driving of Capacitive Loads

Example: Design a pad driver for driving a load capacitance of 10 pF with equal rise/fall times, determine $t_{\text {PROP }}$ for the pad driver, and compare this with the propagation delay for driving the pad with a minimum-sized reference inverter.

$$
\begin{aligned}
& \text { In } 0.5 \mathrm{u} \text { proc } \mathrm{t}_{\text {REF }}=20 \mathrm{ps} \text {, } \\
& \begin{array}{c}
\text { For } \theta=2.5, \quad \mathrm{n}=8 \quad \mathrm{~W}_{\mathrm{REF}}=\mathrm{W}_{\mathrm{MIN}} \\
\mathrm{~W}_{\mathrm{nk}}=2.5^{\mathrm{k}-1} \cdot \mathrm{~W}_{\mathrm{REF}}, \quad \mathrm{~W}_{\mathrm{pk}}=3 \cdot 2.5^{\mathrm{k}-1} \cdot \mathrm{~W}_{\mathrm{REF}}
\end{array} \\
& \mathrm{C}_{\text {REF }}=4 \mathrm{fF}, \mathrm{R}_{\text {PDREF }}=2.5 \mathrm{~K} \\
& L_{n}=L_{p}=L_{\text {MIN }}
\end{aligned}
$$

Note devices in last stage are very large!

Will the circuit operate even faster if we increase the number of stages beyond $\mathrm{n}_{\text {opt }}$?

$$
\mathrm{n}=\mathrm{n}_{\mathrm{OPT}}
$$

Fundamental Limit on Size of Load that Can be Driven at given Clock Rate

Can $\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ be clocked at 100 MHz with a reference inverter?

$$
\begin{gathered}
\text { Assume } \mathrm{C}_{\mathrm{REF}}=4 \mathrm{fF}, \quad \mathrm{t}_{\mathrm{REF}}=\mathbf{2 0 p s} \quad \mathrm{f}_{\mathrm{IN}-\mathrm{MAX}}=1 / \mathrm{t}_{\text {PROP }} \\
\mathrm{t}_{\mathrm{PROP}}=\mathrm{t}_{\mathrm{REF}} \bullet \mathrm{FI}_{\mathrm{LOAD}}=20 \mathrm{psec} \bullet \frac{10 \mathrm{pF}}{4 \mathrm{fF}}=20 \mathrm{psec} \bullet 2500=50 \mathrm{n} \mathrm{sec} \\
\mathrm{f}_{\mathrm{IN}-\mathrm{MAX}}=\frac{1}{50 \mathrm{nsec}}=20 \mathrm{MHz}
\end{gathered}
$$

No: $\quad \mathrm{f}_{\mathrm{IN}-\mathrm{MAX}}<100 \mathrm{MHz}$

Fundamental Limit on Size of Load that Can be Driven at given Clock Rate

Can $\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$ be clocked at 100 MHz if a pad driver is used?
Assume $\mathrm{C}_{\mathrm{REF}}=4 \mathrm{fF}$,
$t_{\text {REF }}=20 \mathrm{ps}$
$\mathrm{f}_{\mathrm{IN}-\mathrm{MAX}}=1 / \mathrm{t}_{\text {PROP }}$
$\mathrm{FI}_{\text {LOAD }}=\frac{10 \mathrm{pF}}{4 \mathrm{fF}}=2500$

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{OPT}}=\ln \left(\frac{\mathrm{C}_{\mathrm{L}}}{\mathrm{C}_{\mathrm{REF}}}\right)=\ln \left(\mathrm{FI}_{\mathrm{L}}\right)=7.8 \simeq 8 \\
& \mathrm{t}_{\mathrm{PROP}}=\mathrm{n} \theta \mathrm{t}_{\mathrm{REF}}=8 \bullet \mathrm{e} \bullet \mathrm{t}_{\text {REF }}=434 \mathrm{psec} \\
& \mathrm{f}_{\mathrm{N}-\mathrm{MAX}}=\frac{1}{\mathrm{n} \theta \mathrm{t}_{\mathrm{REF}}}=\frac{1}{434 \mathrm{psec}}=2.30 \mathrm{GHz}
\end{aligned}
$$

Fundamental Limit on Size of Load that Can be Driven at given Clock Rate

Can $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ be clocked at 500 MHz if a pad driver is used?

$$
\text { Assume } \mathrm{C}_{\text {REF }}=\mathbf{4 f F}, \quad \mathrm{t}_{\text {REF }}=\mathbf{2 0 p s} \quad \mathrm{f}_{\mathrm{N}-\mathrm{MAX}}=\mathbf{1} / \mathrm{t}_{\text {PROP }} \quad \mathrm{FI}_{\text {LOAD }}=\frac{100 \mathrm{pF}}{4 \mathrm{fF}}=25,000
$$

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{OPT}}=\ln \left(\frac{\mathrm{C}_{\mathrm{L}}}{\mathrm{C}_{\mathrm{REF}}}\right)=\ln (\mathrm{FI} \mathrm{~L})=10.1 \approx 10 \\
& \mathrm{t}_{\text {PROP }}=\mathrm{n} \theta \mathrm{t}_{\text {REF }}=10 \bullet \mathrm{e} \bullet \mathrm{t}_{\text {REF }}=542 \mathrm{psec}
\end{aligned}
$$

$$
\mathrm{f}_{\mathrm{IN}-\mathrm{MAX}}=\frac{1}{\mathrm{n} \theta \mathrm{t}_{\mathrm{REF}}}=\frac{1}{542 \mathrm{psec}}=1.85 \mathrm{GHz}
$$

Fundamental Limit on Size of Load that Can be Driven at given Clock Rate

Can $\mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$ be clocked at 2 GHz if a pad driver is used?
Assume $\mathrm{C}_{\mathrm{REF}}=4 \mathrm{fF}, \quad \mathrm{t}_{\mathrm{REF}}=\mathbf{2 0 p s} \quad \mathrm{f}_{\mathrm{IN}-\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{PROP}} \quad \mathrm{FI}_{\mathrm{LOAD}}=\frac{500 \mathrm{pF}}{4 \mathrm{fF}}=125,000$

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{OPT}}=\ln \left(\frac{\mathrm{C}_{\mathrm{L}}}{\mathrm{C}_{\mathrm{REF}}}\right)=\ln \left(\mathrm{FI}_{\mathrm{L}}\right)=11.7 \approx 12 \\
& \mathrm{t}_{\mathrm{PROP}}=\mathrm{n} \theta \mathrm{t}_{\mathrm{REF}}=12 \bullet \mathrm{e} \bullet \mathrm{t}_{\mathrm{REF}}=652 \mathrm{psec}
\end{aligned}
$$

$$
\mathrm{f}_{\mathrm{N}-\mathrm{MAX}}=\frac{1}{\mathrm{n} \theta \mathrm{t}_{\mathrm{REF}}}=\frac{1}{652 \mathrm{psec}}=1.54 \mathrm{GHz}
$$

Digital Circuit Design

Hierarchical Design
Basic Logic Gates
Properties of Logic Families
Characterization of CMOS Inverter

Static CMOS Logic Gates
Ratio Logic
Propagation Delay

- Simple analytical models

FI/OD
Logical Effort

- Elmore Delay

Sizing of Gates
done

Propagation Delay in "Logic Effort" approaci

(Discussed in Chapter 4 of Text but definitions are not rigorous)

Logical effort

From Wikipedia, the free encyclopedia (Dec 8, 2021)
The method of logical effort, a term coined by Ivan Sutherland and Bob Sproull in 1991, is a straightforward technique used to estimate delay in a CMOS circuit. Used properly, it can aid in selection of gates for a given function (including the number of stages necessary) and sizing gates to achieve the minimum delay possible for a circuit.

Propagation Delay in "Logic Effort" approaci

(Discussed in Chapter 4 of Text but definitions are not rigorous)
Propagation delay for equal rise/fall gates was derived to be

$$
\mathbf{t}_{\text {PROP }}=\mathbf{t}_{\text {REF }} \sum_{k=1}^{n} \frac{\mathbf{F}_{(k+1)}}{O D_{k}}
$$

Delay calculations with "logical effort" approach
Logical effort delay approach:

$$
\mathbf{t}_{\text {PROP }}=\mathrm{t}_{\text {REF }} \sum_{k=1}^{\mathrm{n}} \mathbf{f}_{\mathrm{k}} \quad \begin{aligned}
& \text { (t} \mathrm{t}_{\text {REF }} \text { scaling factor not explicitly stated in W_H } \\
& \text { textbook. As defined in W_H, } f_{k} \text { is dimensionless) }
\end{aligned}
$$

where f_{k} is the "effort delay" of stage k

$$
f_{k}=g_{k} h_{k}
$$

$\mathrm{g}_{\mathrm{k}}=$ =logical effort
$h_{k}=$ electrical effort

Propagation Delay in "Logic Effort" approach

$$
\begin{aligned}
& \quad t_{\text {PROP }}=t_{\text {REF }} \sum_{k=1}^{n} f_{k} \quad f_{k}=g_{k} h_{k} \\
& f_{k}=\text { "effort delay" of stage } k \\
& g_{k}=\text { logical effort } \\
& h_{k}=\text { electrical effort }
\end{aligned}
$$

Logic Effort is the ratio of the input capacitance of a gate to the input capacitance of an inverter that can deliver the same output current

Electrical Effort is the ratio of the gate load capacitance to the input capacitance of a gate

Propagation Delay in "Logic Effort" approach

$$
\mathfrak{t}_{\text {PROP }}=t_{\text {REF }} \sum_{k=1}^{n} f_{k} \quad f_{k}=g_{k} h_{k}
$$

Logic Effort (g) is the ratio of the input capacitance of a gate to the input capacitance of an inverter that can deliver the same output current

Electrical Effort (h) is the ratio of the gate load capacitance to the input capacitance of a gate

$$
g_{k}=\frac{\mathrm{C}_{\mathrm{IN}}^{\mathrm{k}}}{} \mathrm{C}_{\mathrm{REF}} \cdot \mathrm{OD}_{\mathrm{k}} \quad \quad h_{\mathrm{k}}=\frac{\mathrm{C}_{\mathrm{REF}} \cdot \mathrm{Fl}_{\mathrm{k}+1}}{\mathrm{C}_{\mathrm{IN}}}
$$

Propagation Delay in "Logic Effort" approach

$$
\begin{aligned}
& \mathbf{t}_{\text {PROP }}=t_{\text {REF }} \sum_{k=1}^{n} f_{k} \quad f_{k}=g_{k} h_{k} \\
& g_{k}=\frac{C_{I N_{k}}}{C_{R E F} \cdot O_{k}} \quad h_{k}=\frac{C_{R E F} \bullet F_{l(k+1)}}{\mathrm{C}_{I N_{k}}}
\end{aligned}
$$

$$
\begin{aligned}
& f_{k}=\frac{F_{(k+1)}}{O D_{k}} \\
& \mathbf{t}_{\text {PROP }}=\mathbf{t}_{\text {REF }} \sum_{k=1}^{n} f_{k}=\mathbf{t}_{\text {REF }} \sum_{k=1}^{n} \mathbf{g}_{k} \mathbf{h}_{\mathrm{k}}=\mathbf{t}_{\text {REF }} \sum_{k=1}^{n} \frac{\mathbf{F}_{(k+1)}}{\mathbf{F O D}_{k}}
\end{aligned}
$$

Propagation Delay in "Logic Effort" approach

$$
\mathbf{t}_{\text {PROP }}=\mathbf{t}_{\text {REF }} \sum_{k=1}^{n} \mathbf{f}_{k}=\mathbf{t}_{\text {REF }} \sum_{k=1}^{n} \mathbf{g}_{\mathrm{k}} \mathbf{h}_{\mathrm{k}}=\mathbf{t}_{\text {REF }} \sum_{\mathrm{k}=1}^{\mathrm{n}} \frac{\boldsymbol{F}_{(k+1)}}{\mathbf{O D}}
$$

- Note this expression is identical to what we have derived previously ($\mathrm{t}_{\text {REF }}$ scaling factor not included in W_H text)
- Probably more tedious to use the "Logical Effort" approach
- Extensions to asymmetric overdrive factors may not be trivial
- Extensions to include parasitics may be tedious as well
- Logical Effort is widely used throughout the industry

Digital Circuit Design

Hierarchical Design
Basic Logic Gates
Properties of Logic Families
Characterization of CMOS Inverter

Static CMOS Logic Gates
Ratio Logic
Propagation Delay

- Simple analytical models

FI/OD
Logical Effort
Elmore Delay
Sizing of Gates

- The Reference Inverter
done

Propagation Delay with Multiple Levels of Logic
Optimal driving of Large Capacitive Loads
\Longrightarrow Power Dissipation in Logic Circuits

- Other Logic Styles
- Array Logic
- Ring Oscillators

- Interconnects have a distributed resistance and a distributed capacitance
- Often modeled as resistance/unit length and capacitance per unit length
- These delay the propagation of the signal
- Effectively a transmission line
- analysis is really complicated
- Can have much more complicated geometries

Elmore Delay Calculations

Can have much more complicated geometries

Elmore Delay Calculations

For $\quad X_{1}<X_{2}<X_{3}$

Elmore Delay Calculations

A lumped element model of transmission line (with " T " elements)

Even this lumped model is 4-th order and a closed-form solution is very tedious! Can use "L" or other lumped segments as well (with small number some perform better than others) Need a quick (and reasonably good) approximation to the delay of a delay line !! Did anyone actually analyze a circuit like this in EE 201?

Elmore Delay Calculations

T-Model

L-Model

$$
\begin{aligned}
& R_{X}=\frac{R_{\square} \frac{L}{W}}{2 n} \\
& C_{X}=\frac{C_{\text {Density }} W L}{n}
\end{aligned}
$$

n -segment interconnect
$R_{Y}=\frac{R_{\square} \frac{L}{W}}{n}$
$C_{X}=\frac{C_{\text {Density }} W L}{n}$

EIn@

Elmore delay: $\quad t_{E D}=\sum_{i=1}^{n}\left(C_{i} \sum_{j=1}^{i} R_{j}\right)$

- It can be shown that this is a reasonably good approximation to the actual delay
- provided sufficient number of stages are used
- number does not need to be very large
- Numbering is critical (resistors and capacitors numbered from input to output)
- As stated, only applies to this specific structure
- HL and LH Elmore Delays are the same
- Since $t_{E H L}=t_{E L H}, t_{\text {PROP }}=2 t_{E D}$

Elmore Delay Calculations

Elmore delay: $\quad t_{P D}=\sum_{i=1}^{n}\left(C_{i} \sum_{j=1}^{i} R_{j}\right)$

- Note error in text on Page 161 of first edition of WH

- Not detailed definition on Page 150 of second edition of WH

Elmore Delay Calculations

From Wikipedia (Dec 8 2021):
Elmore delay[1] is a simple approximation to the delay through an RC network in an electronic system. It is often used in applications such as logic synthesis, delay calculation, static timing analysis, placement and routing, since it is simple to compute (especially in tree structured networks, which are the vast majority of signal nets within ICs) and is reasonably accurate. Even where it is not accurate, it is usually faithful, in the sense that reducing the Elmore delay will almost always reduce the true delay, so it is still useful in optimization.
[1] W.C. Elmore. The Transient Analysis of Damped Linear Networks with Particular Regard to 29 Wideband Amplifiers. J. Applied Physics, vol. 19(1), 1948.

Elmore Delay Calculations

Example:

Elmore delay:

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{ED}}=\sum_{\mathrm{i}=1}^{4}\left(\mathrm{C}_{\mathrm{i}} \sum_{\mathrm{j}=1}^{\mathrm{i}} \mathrm{R}_{\mathrm{j}}\right) \\
& \mathrm{t}_{\mathrm{ED}}=\sum_{\mathrm{i}=1}^{4}\left(\mathrm{t}_{\mathrm{i}}\right) \\
& \text { where } \\
& \mathrm{t}_{\mathrm{i}}=\mathrm{C}_{\mathrm{i}} \sum_{\mathrm{j}=1}^{\mathrm{i}} \mathrm{R}_{\mathrm{j}} \quad j=1,2,3,4
\end{aligned}
$$

What is really happening?

Elmore Delay Calculations

Extensions:

Lumped Network Model:

Elmore Delay Calculations

Extensions:

1. Create a lumped element model

2. Identify the path from input to output

Elmore Delay Calculations

Extensions:

3. Renumber elements along path from input to output and neglect off-path elen

4. Use Elmore Delay equation for elements on this RC network

$$
t_{E D}=\sum_{i=1}^{4}\left(C_{i} \sum_{j=1}^{i} R_{j}\right)
$$

Elmore Delay Calculations

How is a resistive load handled?

Elmore Delay Calculations

Example with resistive load:

where

$$
\mathrm{t}_{\mathrm{ED}}=\sum_{\mathrm{i}=1}^{4}\left(\mathrm{t}_{\mathrm{i}}\right)
$$

$\mathrm{t}_{\mathrm{i}}=\mathrm{C}_{\mathrm{i}} \sum_{\mathrm{j}=1}^{\mathrm{i}} \mathrm{R}_{\mathrm{j}} \quad j=1,2,3$

$t_{4}=C_{4}\left(\left[\sum_{j=1}^{4} R_{j}\right] / / R_{5}\right)$

Elmore delay:
$t_{E D}=\sum_{i=1}^{4}\left(C_{i} \sum_{j=1}^{i} R_{j}\right)$

Elmore Delay Calculations

With resistive load:

Actually, R_{L} affects all of the delays and a modestly better but modestly more complicated delay model is often used

Elmore Delay Calculations

How are the number of stages chosen?

- For hand analysis, keep number of stages small (maybe 3 or 4 for simple delay line) if possible)
- If "faithfulness" is important, should keep the number of stages per unit length constant

Elmore Delay Calculations

?

Elmore Delay Calculations

Determine propagation delay

$$
\begin{gathered}
t_{1}=R\left(C+C_{\text {REF }}\right) \quad t_{2}=3 R C \quad t_{3}=5 R\left(C+\frac{1}{2} C_{R E F}\right) \quad t_{4}=\left[6 R / / / R_{2}\right] \frac{25}{4} C_{\text {REF }} \quad t_{\text {PROP5 } 5}=t_{R E F} \frac{20}{5} \\
\mathrm{t}_{\mathrm{PROP}}=2 \sum_{\mathrm{i}=1}^{4} \mathrm{t}_{\mathrm{i}}+\mathrm{t}_{\mathrm{PROP}} 5
\end{gathered}
$$

Digital Circuit Design

Hierarchical Design
Basic Logic Gates
Properties of Logic Families
Characterization of CMOS Inverter
Static CMOS Logic Gates
Ratio Logic
Propagation Delay
Simple analytical models
FI/OD
Logical Effort
Elmore Delay
Sizing of Gates
\Rightarrow The Reference Inverter
done
partial

Power Dissipation in Logic Circuits

Assume current periodic with period T_{CL}

$$
P_{A V G, T}=\frac{1}{T_{C L}} \int_{t_{1}}^{t_{1}+T_{C L}} V_{D D} I_{D D}(t) d t
$$

Power Dissipation in Logic Circuits

Types of Power Dissipation

- Static
- Pipe
- Dynamic
- Leakage
- Gate
- Diffusion
- Drain

Static Power Dissipation

If Boolean output averages H and $\mathrm{L} 50 \%$ of the time

$$
\begin{gathered}
P_{\mathrm{STAT}, \mathrm{AVG}}=\frac{P_{\mathrm{H}}+\mathrm{P}_{\mathrm{L}}}{2} \\
\mathrm{P}_{\mathrm{STAT}, \mathrm{AVG}}=\frac{\mathrm{V}_{\mathrm{DD}}\left(l_{\mathrm{DDH}}+\mathrm{l}_{\mathrm{DDL}}\right)}{2}
\end{gathered}
$$

- Generally decreases with $V_{D D}$
- $I_{D D H}=I_{D D L}=0$ for static CMOS gates so $P_{S T A T}=0$
- A major source of power dissipation in ratio logic circuits and the major reason CMOS is so widely used

Pipe Power Dissipation

Due to conduction of both PUN and PDN during transitions

- Can be made small if transitions are fast
- Usually negligible in Static CMOS circuits

Dynamic Power Dissipation

Due to charging and discharging C_{L} on logic transitions
C_{L} dissipates no power but PUN and PDN dissipate power during charge and discharge of C_{L}
C_{L} includes all gate input capacitances of loads and interconnect capacitances

Dynamic Power Dissipation

Energy supplied by $V_{D D}$ when C_{L} charges Assume a HL input transition starts at $t=t_{1}$

$$
\begin{aligned}
& \left.\begin{array}{l}
E=\int_{t_{1}}^{\infty} V_{D D} \operatorname{DDD}^{(t) d t} \\
I_{D D}=C_{L} \frac{d V_{C}}{d t}
\end{array}\right\} \\
& E=\int_{t_{1}}^{\infty} V_{D D} C_{L} \frac{d V_{C}}{d t} d t \quad \text { change variable } u=V_{C}(t) \\
& E=\int_{V_{C}=0}^{V_{D D}} V_{D D} C_{L} d V_{C}=V_{D D} C_{L} \int_{V_{C}=0}^{V_{D D}} d V_{C}=\left.V_{D D} C_{L} V_{C}\right|_{V_{C}=0} ^{V_{D D}}=V_{D D}^{2} C_{L}
\end{aligned}
$$

Energy stored in C_{L} after C_{L} is charged to V_{DD} :

$$
\mathrm{E}=\frac{1}{2} \mathrm{C}_{\mathrm{L}} \mathrm{~V}_{\mathrm{DD}}^{2}
$$

Dynamic Power Dissipation

Energy supplied by V_{DD} and dissipated in R_{PU} when C_{L} charges

$$
\mathrm{E}_{\mathrm{DIS}}=\frac{1}{2} \mathrm{C}_{\mathrm{L}} \mathrm{~V}_{\mathrm{DD}}^{2}
$$

Energy stored on C_{L} after L-H transition

$$
\begin{aligned}
& E_{S T O R E}=\frac{1}{2} C_{L} V_{D D}^{2} \\
& E=E_{D I S}+E_{S T O R E}=C_{L} V_{D D}^{2}
\end{aligned}
$$

When the output transitions from H to L, energy stored on C_{L} is dissipated in PDN
Thus, energy from V_{DD} for one L-H: H-L output transition sequence is

$$
E=C_{L} V_{D D}^{2}
$$

If f is the average transition rate of the output, determine $P_{\text {AVG }}$

Dynamic Power Dissipation

Energy from V_{DD} for one L-H: H-L output transition sequence is

$$
\mathrm{E}=\mathrm{C}_{\mathrm{L}} \mathrm{~V}_{\mathrm{DD}}^{2}
$$

If f is the average transition rate of the output, determine $\mathrm{P}_{\mathrm{AVG}}$

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{AVG}}=\frac{\mathrm{E}}{\mathrm{~T}}=\mathrm{Ef} \\
& \mathrm{P}_{\mathrm{DYN}}=\mathrm{fC} \\
& \mathrm{~L} \\
& V_{\mathrm{DD}}^{2}
\end{aligned}
$$

If a gate has a transition duty cycle of $\mathbf{5 0 \%}$ with a clock frequency of f_{CL}

$$
P_{D Y N}=\frac{f_{C L}}{2} C_{L} V_{D D}^{2}
$$

Note dependent on the square of $V_{D D}$! Want to make $V_{D D}$ small !!!
Major source of power dissipation in many static CMOS circuits for $L_{\text {min }}>0.1 u$

Dynamic Power Dissipation

Energy dissipated with clock signal itself

$$
\mathrm{P}_{\mathrm{DYN}}=\mathrm{f}_{\mathrm{CL}} \mathrm{C}_{\mathrm{L}} \mathrm{~V}_{\mathrm{DD}}^{2}
$$

The clock transitions on every clock cycle (i.e. it has a transition duty cycle of 100\%) Clock distribution can cause significant power dissipation

But if a gate has a transition duty cycle of 50% with a clock frequency of $f_{C L}$

$$
P_{D Y N}=\frac{f_{C L}}{2} C_{L} V_{D D}^{2}
$$

Power Dissipation

- All power is dissipated in pull-up and pull-down devices
- C_{L} dissipates no power but PUN and PDN dissipate power when charging and discharging C_{L}
- Dynamic power dissipation reduced by more (often much more) than a factor of 2 if minimum sizing strategy is used
- NAND logic more attractive than NOR logic when multiple inputs required

Leakage Power Dissipation

- Gate

- with very thin gate oxides, some gate leakage current flows
- major concern in 60 nm and smaller processes
- actually a type of static power dissipation

-Diffusion

- Leakage across a reverse-biased pn junction
- Dependent upon total diffusion area
- May actually be dominant power loss on longerchannel devices
- Actually a type of static power dissipation

-Drain

- channel current due to small $\mathrm{V}_{\mathrm{GS}}-\mathrm{V}_{\mathrm{T}}$
- of significant concern only with low V_{DD} processes

- actually a type of static power dissipation

Example: Determine the dynamic power dissipation in the last stage of a 6 -stage CMOS pad driver if used to drive a 10 pF capacitive load if the system clock is 500 MHz and the output changes with 50% of the clock transitions. Assume pad driver with $O D$ of $\theta=2.5$ and $V_{D D}=3.5 \mathrm{~V}$

Solution: (assume output changes with $\mathbf{5 0 \%}$ of clock transitions)

$$
P_{D Y N}=\frac{f_{C L}}{2} C_{L} V_{D D}^{2}=\frac{5 E 8}{2} \cdot 10 \mathrm{pF} \cdot 3.5^{2}=30.5 \mathrm{~mW}
$$

Note this solution is independent of the OD and the process

Example: Determine the power that would be required in the last stage of a CMOS pad driver to drive a 32 -bit data bus off-chip if the capacitive load on each line is 10 pF . Assume the clock speed is 500 MHz and that each bit has an average 50% toggle rate. Assume a pad driver with OD of $\theta=2.5$ and $V_{V_{D D}}=3.5 \mathrm{~V}$

In 0.5 u proc $\mathrm{t}_{\mathrm{REF}}=20 \mathrm{ps}$, $\mathrm{C}_{\text {REF }}=4 \mathrm{fF}, \mathrm{R}_{\text {PDREF }}=2.5 \mathrm{~K}$

Solution:

$$
P_{D Y N}=32 \cdot \frac{f_{C L}}{2} C_{L} V_{D D}^{2}=32 \cdot \frac{5 E 8}{2} \cdot 10 \mathrm{pF} \cdot 3.5^{2}=980 \mathrm{~mW}
$$

Note: A very large amount of power is required to take a large bus off-chip if bus has a high rate of activity.

Example: Will the CMOS pad driver actually be able to drive the 10pF load with a system clock of 500 MHz as in the previous example in the 0.5 u process?

In 0.5 u proc $\mathrm{t}_{\text {REF }}=20 \mathrm{ps}$,
$\mathrm{C}_{\mathrm{REF}}=4 \mathrm{fF}, \mathrm{R}_{\text {PDREF }}=2.5 \mathrm{~K}$

Solution - since outputs are data dependent, output must be able to operate 500 Mz :
$\mathrm{t}_{\mathrm{CLK}}=\frac{1}{500 \mathrm{MHz}}=2 \mathrm{nsec}$
$\mathrm{FI}_{\text {load }}=\frac{10 \mathrm{pF}}{4 f F}=2500$
$O D_{6}=\theta^{5}=98$
$\mathrm{t}_{\mathrm{PROP}}=5 \theta \bullet \mathrm{t}_{\mathrm{REF}}+\frac{\mathrm{Fl}_{\text {load }}}{\mathrm{OD}_{6}} \mathrm{t}_{\text {REF }} \quad \frac{\mathrm{Fl}_{\text {load }}}{O D_{6}}=\frac{2500}{98} \cong 25$
$\mathrm{t}_{\text {prop }}=5 \cdot 2.5 \cdot 20 \mathrm{psec}+25 \cdot 20 \mathrm{psec}=(12.5+25) 20 \mathrm{psec}=0.75 \mathrm{nsec}$
since $t_{\text {CLK }}>t_{\text {PROP }}$, this pad driver can drive the 10 pF load at 500 MHz

Example: Will the CMOS pad driver actually be able to drive the 10 pF load with a system clock of 500 MHz as in the previous example in the 0.5 u process?

Solution - since outputs are data dependent, output must be able to operate 500 Mz :

$$
\mathrm{t}_{\mathrm{CLK}}=\frac{1}{500 \mathrm{MHz}}=2 \mathrm{Hvoc}{ }_{2 \mathrm{GHz}}^{0.5 \mathrm{nsec}} \quad \mathrm{Fl}_{\text {load }}=\frac{10 p F}{4 f F}=2500 \quad O D_{6}=\theta^{5}=98
$$

$t_{\mathrm{PROP}}=5 \bullet \theta \bullet \mathrm{t}_{\text {REF }}+\frac{\mathrm{Fl}_{\mathrm{load}}}{\mathrm{OD}_{6}} \mathrm{t}_{\text {REF }}$

$$
\frac{\mathrm{FI}_{l o a d}}{O D_{6}}=\frac{2500}{98} \cong 25
$$

$\mathrm{t}_{\text {prop }}=5 \cdot 2.5 \cdot 20 \mathrm{psec}+25 \cdot 20 \mathrm{psec}=(12.5+25) 20 \mathrm{psec}=0.75 \mathrm{nsec}$

Example: Determine the dynamic power dissipation in the next to the last stage of a 6 -stage CMOS pad driver if used to drive a 10 pF capacitive load if clocked at 500 MHz . Assume pad driver with OD of $\theta=2.5$ and $V_{D D}=3.5 \mathrm{~V}$

Solution:
$\mathrm{C}_{\mathrm{IN}}=\theta^{5} \mathrm{C}_{\text {REF }}=2.5^{5} \cdot 4 \mathrm{fF}=390 \mathrm{fF}$
$P_{D Y N}=f_{C L} C_{L} V_{D D}^{2}=5 E 8 \cdot 390 f F \cdot 3.5^{2}=2.4 m W$

Example: Is the 6-stage CMOS pad driver adequate to drive the 10pF capacitive load as fast as possible? Assume pad driver with OD of $\theta=2.5$ and $V_{D D}=3.5 \mathrm{~V}$

Solution:

$$
\mathrm{n}_{\mathrm{OPT}}=\ln \left(\frac{\mathrm{C}_{\mathrm{L}}}{\mathrm{C}_{\mathrm{REF}}}\right)=\ln \left(\frac{10 \mathrm{pF}}{4 \mathrm{fF}}\right)=7.8
$$

No - an 8-stage pad driver would drive the load much faster (but is not needed If clocked at only 500 MHz)

Stay Safe and Stay Healthy !

End of Lecture 43

